Łukasz Pańkowski

Łukasz Pańkowski

Adam Mickiewicz University in Poznań

Assistant Professor

Published or accepted

  1. Some remarks on the generalized strong recurrence for L-functions, in: New Directions in Value Distribution Theory of zeta and L-functions: proceedings of Würzburg Conference, October 6-10, 2008, Shaker Verlag, (2009), 305-315
  2. Hybrid joint universality theorem for Dirichlet L-functions, Acta Arith. 141 (2010), 59-72
  3. Applications of hybrid universality to multivariable zeta-functions, J. Number Theory 131(11) (2011), 2151–2161 (joint work with T. Nakamura)
  4. On universality for linear combinations of L-functions, Monats. Math. 165 (2012), 433-446 (joint work with T. Nakamura)
  5. Erratum to The generalized strong recurrence for non-zero rational parameters, Arch. Math. 99 (2012), 43-47 (joint work with T. Nakamura)
  6. On hybrid universality for L-functions, in Functions in Number Theory and Their Probabilistic Aspects, eds. K. Matsumoto, S. Akiyama, K. Fukuyama, H. Nakada, H. Sugita, A. Tamagawa, RIMS Kôkyűroku Bessatsu B34 (2012), 319–334
  7. Zeros and c-values of Epstein zeta functions, Šiauliai Math. Semin. 8(16) (2013), 181-195 (joint work with T. Nakamura)
  8. Hybrid universality theorem for L-functions without Euler product, Integral Transforms and Special Functions 24(1) (2013), 39-49
  9. Self-approximation of the Riemann zeta-function, Bull. Aust. Math. Soc. 87(3) (2013), 452–461 (joint work with T. Nakamura)
  10. Extreme values of L-functions from the Selberg class, Int. J. Number Theory 9(5) (2013), 1113–1124 (joint work with J. Steuding)
  11. Self-approximation for Hurwitz zeta-functions with rational parameter, Lith. Math J. 54 (2014), 74–81 (joint work with E. Karikovas)
  12. Value distribution for the derivatives of the logarithm of L-functions from the Selberg class in the half-plane of absolute convergence, J. Math. Anal. Appl. 433 (2016), 566-577 (joint work with T. Nakamura)
  13. Joint universality and generalized strong recurrence for the Riemann zeta function with rational parameter, J. Number Theory 163 (2016), 61-74
  14. On complex zeros off the critical line for non-monomial polynomial of zeta-functions, Math. Zeit. 284 (2016), 23-39 (joint work with T. Nakamura)
  15. Joint universality for Lerch zeta functions, J. Math. Soc. Japan 69(1) (2017), 153-161 (joint work with Y. Lee and T. Nakamura)
  16. Effective version of self-approximation for the Riemann zeta-function, Math. Nachr. 290 (2017), no. 2-3, 401-414 (joint work with T. Nakamura)
  17. Large values for L-functions from the Selberg class, J. Math. Anal. Appl. 446 (2017), 345–364 (joint work with C. Aistleitner)
  18. Selberg’s orthonormality conjecture and joint universality for L-functions, Math. Zeit. 286 (2017), no. 1, 1-18 (joint work with Y. Lee and T. Nakamura)
  19. Joint universality of dependent L-functions, Ramanujan J. 45 (2018), no. 1, 181-195
  20. Note on the number of divisors of reducible quadratic polynomials, Bull. Aust. Math. Soc. 99 (2019), no. 1, 1-9 (joint work with A. Dudek, V. Scharaschkin)
  21. Joint value-distribution of shifts of the Riemann zeta-function, Results Math. 77 (2022), no. 2, paper no. 76, 17 pp.
  22. Joint extreme values of $L$-functions, Math. Z. 302 (2022), no. 2, 1177-1190 (joint work with K. Mahatab, A. Vatwani)
  23. Zeros of $L(s)+L(2s)+\ldots+ L(Ns)$ in the region of absolute convergence, J. Number Theory 242 (2023), 647-659 (joint work with M. Righetti)
  24. On Mixed Joint Discrete Universality for a Class of Zeta-functions: One More Case, Taiwanese J. Math. 27(2) (2023), 221 - 236 (joint work with R. Kačinskaitė, K. Matsumoto)
  25. Notes on universality in short intervals and exponential shifts, Lith J. Math. 64 (2024), 125 - 137 (joint work with J. Andersson, R. Garunkštis, R. Kačinskaitė, K. Nakai, A. Sourmelidis, R. Steuding, J. Steuding, S. Wananiyakul)
  26. On the sign changes of $\Psi(x)-x$, Math. Comp. 94 (2025), 3083 - 3100 (joint work with M. Grześkowiak, J. Kaczorowski, M. Radziejewski)
  27. Universality of the zeta function in short intervals, Ramanujan J. 68 (2025), no. 5, pp. 11 (joint work with Y. Lee)